
 LANSA Newsletter April 2013 Page 1

Adopting DirectX in Visual
LANSA applications

Visual LANSA version 13 now has a choice of application rendering engine: the old

Win32 or the new DirectX.

Using DirectX as a rendering engine is a necessary step forward for the LANSA runtime,

and will help to keep Visual LANSA at the forefront of Windows application development
as point and click desktop applications make way for touch friendly web and tablet style

user interfaces.
With the inevitable rise of Windows 8, hybrid laptop/tablets an d mobile computing,

application styles are changing rapidly, and version 13 introduces new user designed
controls, dynamic styles, mouse events, popups, animations and more.

Technology Insurance
With the change of a single flag, existing applications can start using the DirectX engine

and will run exactly as they did in version 12. LANSA has gone to great lengths to make
sure that ñflicking the switchò and adopting the DirectX runtime, is as trouble free as
possible.

However, despite LANSAôs best efforts, there are few scenarios where the adoption of a

new technology has led to the occasional concession. This newsletter contains a
separate document (AdoptingDirectX. pdf) that outlines these issues and provides a
practical approach to managing the resulting development challenges.

This is a valuable document for all customers looking to incorporate DirectX as part of

their LANSA strategy.

Newsletter
April 2013

In
This
Issue

Adopting DirectX in VL applications page 1 New LongRange version available page 11
Understanding Carousel in VL V13 page 2 Unicode and DBCS in LANSA V13 page 12
PNG Images in LANSA V13 page 6 Understanding Tree in VL V13 page 14
V13 Deployment and 9 character Form page 7 Override File Library in VL page 18
VLF new feature in LANSA V13 page 8 Icons for your Mobile Applications page 19

LANSA Newsletter April 2013 Page 2

 WWW.LANSA.COM

Understanding Carousel and User

Designed Controls in Visual LANSA V13

Many modern user interfaces have gone far beyond showing simple columnar lists and
instead use free format panels of information, images, or both. Ebay item listings and

iTunes album view are both great examples of this. Rather than the user seeing a long
list of names, controls such as carou sel can allow a user to browse through data

visually .

Given the requirements, it is no longer possible for a predefined control to match the

needs of the developer. Even something as simple as a carousel item is almost endlessly
configurable and control has to be handed over to the developer to determine how each

of the panels will appear.

User Designed Controls (UDC)
Carousel (prim_caro) is one of a number of new DirectX controls in version 13, which,
along with Book (prim_book) , Tree (prim_tree) and Tile (prim_tile), address the

growing need for greater interface flexibility. Developers still want the power and
simplicity of LANSAôs list handling, but, to incorporate the rise of touch enabled devices
and Windows 8, also need their screen designs to g o far beyond the strictures put in

place by tradition controls such as Tree view (prim_trvw).

LANSA Newsletter April 2013 Page 3

 WWW.LANSA.COM

UDCs act just like lists, supporting Add_Entry, SelectList and the other typical list
commands. However, instead of the control determining the appearance of each item

and the columns of the list determin ing the fields, the developer is free to create a
design, or many different designs, to be added to the control, using whatever fields are
required. When an entry is added to the control, an instance of the desig n is created

and populated with the fields based on the current values.

The reusable part acting as the design for the UDC needs to implement a specific
interface.

Begin_Com Role(*EXTENDS #Prim_panl *Implements #Prim_caro.ICarouselDesign

*ListFields #Lis tFields)

Group_By Name(#ListFields) Fields(#Givename #Surname #Empimg #Empno)

This allows the UDC to communicate with the design instances at runtime, allowing

them to respond to a change of Focus or Selection. Each UDC has its own design
interface (pri m_tile.iTileDesign, prim_tree.iTreeDesign etc.),

When the Carousel is defined, the design reusable part is specified on the Define_com.
This is enough for Visual LANSA to be able to hook up the necessary fields and manage

the underlying list.

Define_Com C lass(#prim_caro<#CarouselDesign>) Name(#UDCCarousel)

This simple pattern is repeated on all UDCs with a control having a design and many

instances of the design being created at runtime as entries are added. However,
because of this, there is an overhead to using a UDC. Creating many component
instances is relatively expensive, and UDCs are best suited to UIs that are high

graphical but show a relatively small amounts of data per screen. For high volume
scenarios, other techniques are recommended.

Exampl e
The following example is a simple form that uses a carousel and a track bar for
navigation. You will need the demonstration materials and it is assumed the partition

has long name support.

Firstly, create a reusable part called CarouselDesign and copy t he code below (next
page) . This will act as the design for each of the items.

LANSA Newsletter April 2013 Page 4

 WWW.LANSA.COM

Function Options(*direct)

Begin_Com Role(*EXTENDS #XDXBasePanel *implements #Prim_caro.ICarouselDesign

*ListFields #ListFields) Height(341) Layoutmanager(#Layout) Width(307)

* Fields mapped in when the entry is added to the Book

Group_By Name(#ListFields) Fields(#Givename #Surname #Empimg #Empno)

Define_Com Class(#Prim_atlm) Name(#Layout)

Define_Com Class(#Prim_atli) Name(#LayoutItem) Attachment(Center) Manage(#Content)

Marginbottom(2) Margi nleft(20) Marginright(20) Margintop(12) Parent(#Layout)

Define_Com Class(#Prim_atli) Name(#LayoutItemBG) Attachment(Center)

Manage(#Background) Parent(#Layout)

Define_Com Class(#PRIM_ATLI) Name(#LayoutItemCaption) Attachment(Bottom)

Manage(#Name) Marginbot tom(12) Marginleft(20) Marginright(20) Margintop(2)

Parent(#Layout)

Define_Com Class(#PRIM_Panl) Name(#Background) Displayposition(1) Height(341)

Layoutmanager(#Layout) Left(0) Parent(#COM_OWNER) Tabposition(1) Tabstop(False)

Top(0) Width(307)

Define_Com C lass(#PRIM_Panl) Name(#Content) Displayposition(1) Height(263)

Left(20) Parent(#Background) Style(#ContentStyle) Tabposition(1) Tabstop(False)

Top(12) Width(267)

Define_Com Class(#prim_labl) Name(#Name) Alignment(Center) Caption('Employee

Name') Displaypos ition(2) Left(20) Parent(#Background) Style(#LargeText)

Tabposition(2) Tabstop(False) Top(279) Verticalalignment(Center) Width(267)

Define_Com Class(#prim_vs.Style) Name(#ContentStyle)

Backgroundbrush(#ContentBrush)

Define_Com Class(#prim_vs.ImageBrush) Na me(#ContentBrush) Sizing(BestFit)

Define_Com Class(#prim_vs.Style) Name(#LargeText) Fontsize(14)

Define_Com Class(#Prim_bmp) Name(#Image) Reference(*Dynamic)

Mthroutine Name(OnAdd) Options(*redefine)

#Com_owner.Opacity := 30

#Com_owner.Cursor <= #sys_appl n.Cursors<Hand>

#Name := ("&1 &2 (&3)").Substitute(#GiveName #Surname #Empno)

* A panel with an image brush is a better technique than simply using an image

control.

* DirectX has inbuilt mechanisms that handle images extremely well.

#Image <= #sys_appln .CreateBitmap

#Image.FileName := #Empimg.FileName

#ContentBrush.Image <= #Image

Endroutine

Mthroutine Name(onItemGotFocus) Options(*Redefine)

#Com_owner.Opacity := 100

Endroutine

Mthroutine Name(onItemLostFocus) Options(*Redefine)

#Com_owner.Opacity := 3 0

Endroutine

End_Com

Secondly, create a new form called FormWithCarousel and copy the code below. This

defines the carousel and the design that it will use. Compile both and execute the form,
ensuring that you execute as DirectX.

Once youôve seen it run, execute again in debug to see how the design instances are

created and how they react with focus change.

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Caption('Carousel') Clientheight(492)

Clientwidth(890) Height(530) Layoutma nager(#Layout) Left(114) Style(#Background)

Top(208) Width(906)

LANSA Newsletter April 2013 Page 5

 WWW.LANSA.COM

* User Designed Control - Carousel

* Individual items are made by adding entries as per typical LANSA list processing

* Fields in the list are defined by the *ListFields parameter of the Desig n being

made

* Prim_caro defines the carousel

* #CarouselDesign defines the appearance of the items created

Define_Com Class(#prim_caro<#CarouselDesign>) Name(#UDCCarousel)

Displayposition(1) Height(442) Left(0) Navigationstyle(None) Parent(#COM_OWNER)

Tabposition(1) Top(0) Width(890)

* Trackbar used to navigate through the carousel

Define_Com Class(#prim_tkbr) Name(#TrackBar) Displayposition(2) Left(20)

Parent(#COM_OWNER) Tabposition(2) Tickstyle(None) Top(442) Value(1) Width(850)

Define_Com Class(#prim_at lm) Name(#Layout)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center) Manage(#UDCCarousel)

Parent(#Layout)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Bottom) Manage(#TrackBar)

Marginleft(20) Marginright(20) Parent(#Layout)

Define_Com C lass(#Prim_timr) Name(#TrackBarTimer) Interval(300)

* Simple white background - Defined locally for simplicity

* Styles are best defined as part of a Visual Style.

Define_Com Class(#prim_vs.style) Name(#Background) Normbackcolor(White)

Evtroutine Handling (#Com_owner.CreateInstance)

#TrackBarTimer.Stop

#Com_owner.Load

Endroutine

Mthroutine Name(Load) Help("Create carousel items") Access(*Private)

* Create Carousel Items

Select Fields(#Surname #Givename #empno) From_File(pslmst)

Fetch Fields(#empimg) From_F ile(pslimg) With_Key(#Empno)

* Adding an entry creates an instance of the design (#CarouselDesign)

* The fields specified by the *Listfields parameter in the design will be

populated in the design instance.

Add_Entry To_List(#UDCCarousel)

Endselect

#UDCCarousel.Items<1>.Focus := True

Endroutine

Evtroutine Handling(#TrackBar.Changed)

* A timer is used so that mulitple changes to the trackbar aren't immediately

transmitted to the carousel, just the last one.

* This provides a smoother user experience.

#Track BarTimer.Stop

#TrackBarTimer.Start

Endroutine

Evtroutine Handling(#UDCCarousel.ItemGotFocus) Item(#Item)

* Update the trackbar to match the carousel position.

#TrackBar.Value := #Item.Entry

Endroutine

Evtroutine Handling(#TrackBarTimer.Tick)

* When the t imer fires, the user has stopped making changes to the trackbar

position.

* Update the carousel position and stop the timer.

#UDCCarousel.Items.Item<#TrackBar.Value>.Focus := True

#TrackBarTimer.Stop

Endroutine

End_Com

LANSA Newsletter April 2013 Page 6

 WWW.LANSA.COM

PNG images in LANSA V13

Version 13 of Visual LANSA introduces full support for PNG format images.

When an application is executed with DirectX rendering, PNG images will be shown

correctly including any transparency embedded in to the image. This greatly improves
the appearance of appl ications, allowing backgrounds to appear through an image.
PNG images can be enrolled in the repository as Bitmaps.

Making your own images
Whilst making your own images is typically something best left to professional graphic

artists, it is nonetheless p ossible to take existing PNG images and to cut and paste bits
from a variety of images to make new ones. Free tools such as Paint.Net greatly simplify
this process.

LANSA images
The Visual LANSA IDE no longer uses icons and bitmaps. It now uses PNG format

images. These images, and a great many more are available on request. Contact LANSA
support to request the images.

Note:
The file contains over 7000 images ranging in size from 16x16 to 512x512. All images

are supplied as is .

LANSA Newsletter April 2013 Page 7

 WWW.LANSA.COM

V13 Deployment tool does n ot allow you to
enter a 9 character Form to Execute

In version 13, an issue has been found in the deployment tool with regards to 9

character Form Names. Although the deployment tool allows you to enter the full 9
characters, it will fail at build time wi th the following error:

This build error message is not correct, as form names/Object Identifiers can be up to 9

characters long. Note that when creating a long filename object, LANSA will
automatically generate an *8* character Identifier, so this will only affect users that

manually change the Identifier to something longer, or those with existing 9 character
form names from V12.

Solution
The issue is being fixed in the next release for V13, however in the meantime we
suggest you use the following wor karound:

¶ First, blank out the Form to Execute parameter
¶ Then manually add a FORM= line to the X_RUN arguments:

LANSA Newsletter April 2013 Page 8

 WWW.LANSA.COM

VLF new feature in V13 - Launching
Applications from the status bar

Launching Applications from the Status Bar
When the Framework is exec uted using RenderType M, the launch button is
displayed in the status bar next to the other navigation pane view buttons:

When the launch button is clicked, applications in the Framework are arranged in the

status bar:

If an application has views, t he view is visualised. If an application has no business
objects it is not shown.

The applications or views respond to two events:
¶ Mouse hover

¶ Click

Mouse hover
With a mouse hover a larger icon with the application/view caption appears:

LANSA Newsletter April 2013 Page 9

 WWW.LANSA.COM

When the l arger image is clicked on, the business objects in the application pop up:

If the popup item is clicked, it triggers the default business objectôs behaviour, as if you
clicked on the business object in the navigation pane.

You can also make the busines s object a favourite by checking the Favourite checkbox.

Note: the Business Object will be added to the first application that allows favourites in
the sequence they appear. If you need to add it to another application you need to use
either the Tree or Li st Navigation View.

Click
If you click on the application/view, the behaviour is exactly the same as clicking on the
larger image.

Removing a favourite business object
An application which has business objects that have been made favourites will have t he

Favorite checkbox is ticked but disabled:

LANSA Newsletter April 2013 Page 10

 WWW.LANSA.COM

This is because one business object can be a favourite in more than one application.

To remove a business object from a favourite application, hover or click on the favourite
application:

Click the Rem ove button to remove the business object from the application's
Favourites .

Warning:
Due to space constraints, this navigation option may not be suited to Frameworks with

a large number of applications and/or applications with large number of business
obj ects. In those cases use any of the other three navigation pane views.

Enabling the Launch button
The display of the launch button is controlled in the Framework properties:

LANSA Newsletter April 2013 Page 11

 WWW.LANSA.COM

New LongRange version
available (Version 11 - RV11)

A new LongRange versio n is available and it contains lots of

new features:
1. General Appearance, Navigation and Functionality Improvements

¶ Submit device language to the server
¶ Submit current device language to server

¶ Allow clear and search icons and associated events inside te xtbox fields.
¶ More options to control title bar and command area

¶ Allow buttons on the Navigation / Title Bar - one on right -hand side for actions
like Save, Done, Edit, etc.

¶ Able to show/change this button and its associated action dynamically.

¶ Improve and resize the action and command bars to better match Appleôs
órecommendedô look.

¶ Overflow menus
¶ New image control properties
¶ Next on keyboards for forward tabbing

¶ Place tabs on bottom (iOS only)
¶ ñDirty (modified) form content notified .

¶ Allow enter (return) in input field to submit event to server (e .g.: Search
fields)

This newsletter contains a separate document (LongRange rv11.pdf) that outlines all

new LongRange features.

2. Complete the LongRange JavaScript API
¶ Complete and release the LongRange JavaScript API for iOS and Android.

Include a new example schema and web accessible documentation ï for RPG
and RDMLX. This feature allows customers and service people with JavaScript
skills to get maximum value from LongRange. It also increases the value that

LongRange can add to HTML5 based solutions.
¶ JavaScript API enhanced to allow server side programs and JavaScript code to

ócommunicateô by exchanging properties and signalling events (ie: requested
actions).

LANSA Newsletter April 2013 Page 12

 WWW.LANSA.COM

Unicode and DBCS in LANSA V13

LANSA V13 introduced two new field types to support Unicode .

Nchar
An Nchar is a fixed - length character field, wit h a length between 1 and 65,535 (this is
the number of characters, not the byte length) .

Nchar fields store alpha data of any code page . For exam ple, in a list, an Nchar field
may have Japanese in one row, and French in another row.

Nchars are classified as Unicode strings.

Depending on the database type, Nchar may or may not treat trailing blanks as
significant. If trailing blanks are not desir ed, an Nvarchar field should be used.

Nvarchar
Nvarchar is a variable - length character field, with a maxi mum length between 1 and

65,535 (this is the number of characters, not the byte length) .
Nvarchars store alpha data of any code page . For example, in a list, an Nvarchar field

may have Japanese in one row, and French in another row.

Nvarchars are classified as Unicode strings.

An Nvarchar retains any trailing blanks, they are significant. When concatenating an

Nvarchar with spaces on the end, those s paces are retained. But the space is NOT
SIGNIFICANT for comparisons.

LANSA Newsletter April 2013 Page 13

 WWW.LANSA.COM

Before LANSA V13, where we did not have Unicode string support, alpha fields in a
DBCS (Double Byte Character Set) language like Chinese or Japanese should have a

minimum length o f 4 characters (Shift out = 1 byte, DBCS character = 2 bytes, Shift in
= 1 byte) .

Unicode no longer requires Shift bytes. In general, 1 character tales 1 length value
(it ôs not bytes any more), no matter which character it is, UNLESS it ôs an Uncommon

Character. The characters are encoded as UTF -16. That ôs 1 6 bits per character for
characters in Plane 0. This is almost all characters. For example, the only characters
miss ing from CJ K (Chinese, Japanese and Korean) are some of the less common

characters in the Hong Kong Supplementary Character Set (HKSCS). For th ese
Uncommon Characters a further 16 bits is required for each of the characters. These are

called surrogate pairs.

If you are dealing with a descriptive field, the length is not usually critical as the
description can be shortened if necessary. LANSA tak es care of limiting data in the Field
to the UTF -16 length. If a surrogate character is in the data then that restricts the

number of characters to 1 less. If you try and put more data in than specified it will be
truncated on a character boundary, just li ke an Alpha truncates on a DBCS boundary.

So the minimum length Unicode field that can contain any single Japanese character is
1.

If we use UNICODE in V13, should we still define a language as Japanese for
example as a DBCS language, or is that irrelevan t when we use UNICODE?

Answer
You still need a Japanese language for Repository multi - lingual data. Firstly so t hat the
data is correctly checked in to IBM i ï its stored natively on IBM i, it ôs not Unicode.

Secondly , so that you can translate your app to another language.

LANSA Newsletter April 2013 Page 14

 WWW.LANSA.COM

Understanding the Tree User Design
Control in Visual LANSA V13

The Tree User Design Control (Prim_tree) allows the developer to utilize the power of

LANSA lists while producing a user interface that can go far beyond the traditional
columnar list appearance.

Like all user d efined controls, Tree allows the developer to create a reusable part to act
as the design for each of the items. This means there are no real restrictions as to what

data is used, or how it can be displayed.

Example
Pre - requisite - This example makes us e of repository objects that are part of

the Visual LANSA DirectX demonstration material.

LANSA Newsletter April 2013 Page 15

 WWW.LANSA.COM

For the purposes of this example, tree is being used as though it were a standard list,
with no child items being created. The items created show the data on two row s, rather

than side by side in two columns. This is a common pattern seen in modern user
interfaces, particularly those designed with a touch screen in mind. Rather than a wide
thin strip of data, a formatted tile is used to show the data in a more organis ed, efficient

and aesthetically pleasing way.

The first step is to create a design panel. This is really little more than a simple reusable
part. However, to enable the tree to communicate effectively with the design instances,
it is necessary for the desi gn to implement the TreeDesign interface.

Begin_Com Role(*EXTENDS #Prim_panl *Implements #Prim_tree.iTreeDesign *ListFields

#ListFields)

Group_By Name(#ListFields) Fields(#Givename #Surname #Empimg #Empno)

This provides a series of methods that can be re defined to allow the reusable part to
perform some processing when the entry is added, selected, gets focus and so on.

To make data handling easier, the *ListFields parameter of the Begin_com can be used

to specify the fields that will be automatically map ped in to the design when the list
entry is added or updated.

Firstly, create a reusable part called TreeDesign and copy the code below. This will act
as the design for each of the items.

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_PANL *implements #Prim_Tree.iTreeDesign *ListFields

#ListFields) Displayposition(1) Height(48) Layoutmanager(#Table) Left(0)

Tabposition(1) Top(0) Width(403)

* Fields mapped in when the entry is added to the tree

Group_By Name(#ListFields) Fields(#Givename #Surname #Empno #Deptment #DeptDesc)

Define_Com Class(#prim_vs.style) Name(#Bold) Bold(True)

Define_Com Class(#PRIM_PANL) Name(#ImagePanel) Displayposi tion(1) Height(48)

Image(#XDXImageEmployee32) Left(0) Parent(#COM_OWNER) Tabposition(1)

Tabstop(False) Top(0) Width(48)

Define_Com Class(#PRIM_LABL) Name(#Employee) Caption('Employee')

Displayposition(2) Ellipses(Word) Height(24) Left(48) Marginleft(2)

Par ent(#COM_OWNER) Style(#Bold) Tabposition(2) Tabstop(False) Top(0)

Verticalalignment(Center) Width(355)

Define_Com Class(#PRIM_LABL) Name(#Department) Caption('Department')

Displayposition(3) Ellipses(Word) Height(24) Left(48) Marginleft(2)

Parent(#COM_OWNER) Tabposition(3) Tabstop(False) Top(24) Verticalalignment(Center)

Width(355)

Define_Com Class(#Prim_tblo) Name(#Table)

Define_Com Class(#Prim_tblo.Column) Name(#Column1) Parent(#Table) Units(Pixels)

Width(48)

LANSA Newsletter April 2013 Page 16

 WWW.LANSA.COM

Define_Com Class(#Prim_tblo.Column) Name(#Colu mn2) Parent(#Table)

Define_Com Class(#Prim_tblo.Row) Name(#Row1) Parent(#Table)

Define_Com Class(#Prim_tblo.Row) Name(#Row2) Parent(#Table)

Define_Com Class(#Prim_tblo.item) Name(#Item1) Column(#Column1)

Manage(#ImagePanel) Parent(#Table) Row(#Row1) Rowspa n(2)

Define_Com Class(#Prim_tblo.item) Name(#Item2) Column(#Column2) Manage(#Employee)

Parent(#Table) Row(#Row1)

Define_Com Class(#Prim_tblo.item) Name(#Item3) Column(#Column2)

Manage(#Department) Parent(#Table) Row(#Row2)

Mthroutine Name(OnAdd) Options(* Redefine)

#Com_owner.Cursor <= #sys_appln.Cursors<Hand>

* Update the design labels using the field values passed in

#Employee := ("&1 &2 (&3)").Substitute(#GiveName #Surname #Empno)

#Department := ("&1 (&2)").Substitute(#Deptdesc #deptment)

* Use the default application MouseOver style

#Com_owner.MouseOverStyle <= #sys_appln.Appearance.TreeMouseOver

Endroutine

Mthroutine Name(OnItemGotFocus) Options(*Redefine)

* Apply the default appliction selection style to

#com_owner.style <= #sys_appln.A ppearance.TreeSelected

Endroutine

Mthroutine Name(OnItemLostFocus) Options(*Redefine)

#com_owner.style <= *Null

Endroutine

End_Com

Secondly, create a new form called Tree and copy the code below. This defines the tree

and the design that it will use. Compile both and execute the form, ensuring that you
execute as DirectX.

Once youôve seen it run, execute again in debug to see how the design instances are
created and how they react with focus change.

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Caption('User Designed Tree')

Clientheight(579) Clientwidt h(463) Height(617) Layoutmanager(#Layout) Left(138)

Style(#Background) Top(195) Width(479)

* User Designed Control - Tree

* Individual items are made by adding entries as per typical LANSA list processing

* Fields in the list are defined by the *ListFields parameter of the Design being

made

* Prim_Tree defines the Tree

* #TreeDesign defines the appearance of the items created

Define_Com Class(#PRIM_TREE<#TreeDesign>) Name(#UDCTree) Displayposition(1)

Height(579) Left(0) Parent(#COM_OWNER) Tabposition(1) Tab stop(False) Top(0)

Width(463)

Define_Com Class(#PRIM_ATLM) Name(#Layout)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center) Manage(#UDCTree)

Parent(#Layout)

Define_Com Class(#prim_vs.Style) Name(#Background) Normbackcolor(White)

Evtroutine Hand ling(#Com_owner.CreateInstance)

Select Fields(#UDCTree) From_File(pslmst)

Fetch Fields(#Deptdesc) From_File(deptab) With_Key(#deptment)

* An instance of the design will be created when the entry is added.

LANSA Newsletter April 2013 Page 17

 WWW.LANSA.COM

Add_Entry To_List(#UDCTree)

Endselect

Endroutine

Evtroutine Handling(#UDCTree.ItemGotFocus)

* Update the form caption with the data from the current list item

#Com_owner.Caption := ("&1 &2 (&3)").Substitute(#GiveName #Surname #Empno)

Endroutine

End_Com

LANSA Newsletter April 2013 Page 18

 WWW.LANSA.COM

Using the option to Override File
Library to Partition data library in

Visual LANSA

V13 contains the following enhancement
------------------ --

CCS#: 0137308 (Enhancement)
Description: Changing the File Library name on Import
Originator: LANSA France

Detailed Description
Selection of the option "Override File Library to Partition D ata Library" will import any

files into the Partition Data Library associated with the current partition. This feature is
particularly useful when importing LANSA files from an export created using an earlier

version of LANSA which would otherwise create t he file in the library nominated in the
imports details column.

It has been reported that in some situations, after import, file libraries are changed to

"partition data library" even if "Override File Library To Partition Data Library" is
unchecked on t he import.

The cause is that in V13, when exporting a file from iSeries with target PC, the
substitution variables are set to $$DTALIB$$, and accordingly they are imported to the

partition data library when imported into VL irrespective of whether the "Ove rride File
Library to Partition Data Library" is checked or not.

The option on the import screen in VL will be enhanced to cater for the extra
consideration.

Until the improved screen is available, if you wish to use the "Override File Library to
Partitio n Data Library" to determine the library during an import, you can blank out the

Target Library field for all files in option 12 Review objects on the list before exporting
the list. This will be $$DTALIB$$ at the moment, and this is what is causing the fi le

library to be overridden to the partition data library.

LANSA Newsletter April 2013 Page 19

 WWW.LANSA.COM

Icons For Your Mobile Applications

LongRange provides a set of custom -made icons which you can use in your applications:

These icons can be found in the LongRange resource folder:
LongRang e RPG: LongRange \ resource under your aXes root folder.

LongRange LANSA: LongRange \ resource under <lansa root folder> \ webserver \ images.

If you cannot find suitable icons in this collection, you can get icon sets on the web for

very little.

For example the company which created the LongRange icons, iconshock
(www.iconshock.com), sells a huge selection of stock icons and icon sets including icons

for iPhone/iPad and Android:

http://www.iconshock.com/

LANSA Newsletter April 2013 Page 20

 WWW.LANSA.COM

We cannot redistribute these icons for licensing reasons, but you can purchase them for
use in your own applications.

Another useful collection is www.glyphish.com :

http://www.glyphish.com/

LANSA Newsletter April 2013 Page 21

 WWW.LANSA.COM

Here is an example of a LongRange application which uses the Glyphish Pro icon set in
the tab bar on the bottom of the screen:

All icons must be copied to the LongRange \ resource directory so that the LongRange

client running on a mobile device can find them.

