

LANSA Newsletter March 2007 page 1
© LANSA 2007

Newsletter
March 2007

http://www.lansa.com

Variant Handling

Function Libraries are a component that contains a set of routines defined using

the MthRoutine command. These function library routines can be used in

expressions.

There are function libraries for string, number, date and time manipulation

(#PRIM_LIBS, #PRIM_LIBN, #PRIM_LIBD) but this is more simply accomplished

using Error! Reference source not found..

To handle objects of type *VARIANT, you need to use the variant function library

#PRIM_LIBV.

Variants can contain any type of data (strings, integers, decimals, booleans,

components). You can use variant functions for testing the kind of value

contained in the variable and you can retrieve its value in converted forms like

numbers, strings or booleans.

Variants make possible the generic processing of values regardless of their type.

For example, the value of a grid cell cannot be known by the compiler before the

application is executed. Therefore the Value parameter of grid EditorChanged and

ItemChangedAccept events returns the value in the cell as a variant so that

compiler errors about the declared type of the value do not occur. You then need

to write the program in a way that understands what type(s) are in the grid.

Also the EditorChanged and ItemChangedAccept events of tree and list views

return the Value parameter as a variant.

Similarly, many ActiveX controls return and accept values as variants. You can

also use variants in your own dynamic programs for generic processing of values

regardless of their type:

Define_Com Class(*Variant) Name(#lclVariant)

In
This
Issue

Variant Handling page 1 Integrator performance SOAP service page 17
MS SQL Server Collections in VL page 4 VLF Web Conf. and Debugging tip page 20
Skype takes over HTTP port page 6 IE7 with VLF Web page 21
Layout/screen formatting XSL editor page 7 UINUSERGROUP error VLF page 22
Scope *APPLICATION page 8 MCH3601 QC2POSIX error on V5R1 page 24
How to use GZip in the VLF page 12 Images Viewer page 25
The cell of a Grid page 15

LANSA Newsletter March 2007 page 2
© LANSA 2007

Using the *Variant class is the recommended approach. Alternatively, you can

use primitive variant component #PRIM_VAR and its properties and methods.

#PRIM_LIBV supports these functions:

VarType VarIsString

VarIsBoolean VarAsBoolean

VarIsEmpty VarAsDecimal

VarIsNull VarAsInteger

VarIsNullReference VarAsReference

VarIsNumber VarAsString

VarIsReference

Variants
• A variant component variable can contain any type of data (strings,

integers, decimals, booleans, components).

• A variant component has properties for testing the kind of value contained

by the component.

• You can retrieve its value in converted forms like numbers, strings or

booleans.

• Variants make it possible for components to give access to values whose

type cannot be statically determined.

Field Typing

• All fields in LANSA are strongly typed.

• The type mismatch is immediately identified by the editor.

• Variants overcome this limitation.

Import
• You must import the #PRIM_LIBV for using with Variants:

IMPORT Libraries(#PRIM_LIBV)

DEFINE_COM Class(#PRIM_VAR) Name(#MYDATA)

#MYDATA := 'HELLO'

#STD_TEXT := VarAsString(#MYDATA)

#MYDATA := 123

#STD_NUM := VarAsDecimal(#MYDATA)

LANSA Newsletter March 2007 page 3
© LANSA 2007

Function Libraries
• An alternative way of using Intrinsic Field Methods is to import function

libraries.

• Function Libraries are a component that contain a set of routines defined

using the MTHROUTINE command.

string #PRIM_LIBS

number #PRIM_LIBN

date and time #PRIM_LIBD

*VARIANT #PRIM_LIBV

Import Strings Library
If you import the #PRIM_LIBS for using with strings:

IMPORT Libraries(#PRIM_LIBS)

You can use the intrinsics in this form:

#STD_TEXT := Trim(#SURNAME)

#STD_TEXT := Lowercase(Trim(#SURNAME))

LANSA Newsletter March 2007 page 4
© LANSA 2007

Support for SQL Server 2000
and SQL Server 2005
collections in Visual LANSA
11.3 (CU3)

The following support was delivered in 11.3 (CU3) and the text below was added

to the EPC771 documentation. Refer to EPC771

(http://www.lansa.com/support/notes/epc/epc771.htm). The information

provided below is very important to understand as it highlights that you cannot

simply elect to upgrade an existing LANSA environment using an SQL Server

database to 11.3 (CU3) and start using this new feature. A degree of planning

and migration is required before an existing SQL Server database can avail of this

newly supported SQL Server feature. Options and alternatives are discussed

below.

==

Support collections in SQL Server 2000 and SQL Server 2005

LANSA now allows the creation of collections with new SQL Server databases.

This is a critical change to SQL Server functionality. If you use SQL Server as

your LANSA database and you created it using a version of LANSA prior to LANSA

11.3 CU3, and you have deployed applications that also use SQL Server, you

MUST NOT use this new feature. You must continue to use a LANSA database

created by prior versions of LANSA. This is because there is no migration possible

from a database that does not support collections to one that does.

If you need to create a new installation of LANSA to maintain an application

deployed prior to LANSA 11.3 CU3, then you must do one of the following:

 Install LANSA with a version of LANSA prior to 11.3 CU3;

 Use an existing SQL Server database that was created a version of LANSA

prior to 11.3 CU3.

If you need to start using a new version of SQL Server to maintain an application

deployed prior to LANSA CU3 - say upgrading from SQL Server 2000 to SQL

Server 2005 - then you must do one of the following:

 Use SQL Server administration utilities to directly upgrade the SQL Server

2000 database to SQL Server 2005;

 Use SQL Server administration utilities to export the entire SQL Server

2000 set of schema and data and import it to the SQL Server 2005

database;

 Install LANSA to the SQL Server 2005 database with a version of LANSA

prior to 11.0 CU3;

LANSA Newsletter March 2007 page 5
© LANSA 2007

This feature is only available to be used for applications that have not yet been

deployed with a version of LANSA prior to LANSA 11.3 CU3 (which may also

include test environments that contain test data that must be retained).

If you are already using an Independent LANSA System created with a version of

LANSA prior to 11.3 CU3 - one that does not have an iSeries Master - then you

also CANNOT start using collections. This is because there is no migration

possible.

If you are already using a Slave LANSA System created with a version of LANSA

prior to 11.3 CU3, and that has not yet been eliminated because of one of the

reasons described above, then provided you have checked all your changes into

the iSeries you can use this new feature.

To use this new feature, create a new SQL Server database and then install

LANSA to it. Collections will be automatically used.

LANSA Newsletter March 2007 page 6
© LANSA 2007

Skype takes over the HTTP
port and causes LANSA for
WEB operations to fail

Installing Skype has been seen to interfere with existing LANSA for

the web applications/operations. This is because Skype takes over the HTTP Port

and confuses IIS.

What can happen is that if Skype is started before IIS, it will use port 80/443

before IIS can do so.

Which can mean that you won't get any page served by IIS (through these ports

only, other ports used by IIS are not affected).

Even if IIS is set to start automatically as a service and Skype is to be started

upon logon, the conflict can occur as it depends on timing.

To avoid this problem, you can disable the checkbox to use port 80 and 443 in

Skype under Options -> Connection.

LANSA Newsletter March 2007 page 7
© LANSA 2007

Layout and screen formatting
disappears from the design
screen in the XSL Editor

An issue has been found with one of the recent automatic updates to Internet

Explorer, which causes the redraw of the XSL Editor design screen to fail. The

effect of this is that at random times the design screen will lose all formatting

and colors. This does not affect the execution of the WAM.

Workaround
It should be possible to recover from this by repeatedly pressing F5 to refresh

the screen. In some cases the screen will not return to normal until you restart

LANSA and the XSL Editor.

Since this Explorer update has already been superseded, it is not possible to

remove this update on its own.

Solution
While the defect appears to be in the Update that Microsoft has supplied, a code

workaround has been found that is scheduled to be addressed in an EPC for

Visual LANSA 11.

Refer to the EPC (http://www.lansa.com/support/notes/epc/index.htm)

information page for updates.

LANSA Newsletter March 2007 page 8
© LANSA 2007

Scope *APPLICATION

The SCOPE parameter of the DEFINE_COM command has been enhanced to

include option *APPLICATION.

All *APPLICATION variables are identified by variable name. Therefore, two

different component classes can share a component instance simply by including

a DEFINE_COM for the variable name and specifying a scope of *APPLICATION.

The first reference to an *APPLICATION scoped variable that is not *DYNAMIC

will cause the component instance to be created. All other accesses retrieve that

instance.

When a component instance at scope *APPLICATION is retrieved, the only

checking performed is to ensure that the class of the component instance can be

dynamically cast to the class specified on the variable's DEFINE_COM.

*APPLICATION variables are released when the application terminates. Care

must be taken to ensure that the component classes used by an instance of a

component at *APPLICATION scope are fully understood. All the component

DLL's required to implement these component classes will remain in memory for

the lifetime of the component instance and this could correspond to the lifetime

of the application.

The example below is created by Jurgen Rentinck from LANSA Amsterdam and shows how Scope

*application works.

A.

Create a new form called APP3. Copy/paste source below into it and compile the

form.

* **
*
* COMPONENT: STD_FORM
*
* **
Function Options(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) CLIENTHEIGHT(104)
CLIENTWIDTH(509) HEIGHT(138) LEFT(481) TOP(202) WIDTH(517)

DEFINE_COM CLASS(#STD_TEXT.Visual) NAME(#STD_TEXT)
DISPLAYPOSITION(1) HEIGHT(19) LEFT(8) PARENT(#COM_OWNER)
TABPOSITION(1) TOP(32) USEPICKLIST(False) WIDTH(478)

Evtroutine Handling(#com_owner.Initialize)
Set Com(#com_owner) Caption(*component_desc)
Endroutine

End_Com

LANSA Newsletter March 2007 page 9
© LANSA 2007

B.

Create a new form called APP2. Copy/paste source below into it and compile the

form.

Function Options(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) CLIENTHEIGHT(160)
CLIENTWIDTH(248) HEIGHT(194) LEFT(445) TOP(120) WIDTH(256)

DEFINE_COM CLASS(#PRIM_PHBN) NAME(#PHBN_2) CAPTION('show app3')
DISPLAYPOSITION(1) LEFT(78) PARENT(#COM_OWNER) TABPOSITION(1)
TOP(64)

Define_Com Class(#app3) Scope(*APPLICATION)

Evtroutine Handling(#com_owner.Initialize)
Set Com(#com_owner) Caption(*component_desc)
Endroutine

Evtroutine Handling(#PHBN_2.Click)
#app3.showform
Endroutine

End_Com

C.

Create a new form called APP1. Copy/paste source below into it and compile the

form.
* **
*
* COMPONENT: STD_FORM
*
* **
Function Options(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) CLIENTHEIGHT(200)
CLIENTWIDTH(253) HEIGHT(234) LEFT(400) TOP(158) WIDTH(261)

DEFINE_COM CLASS(#PRIM_PHBN) NAME(#PHBN_1) CAPTION('show app2')
DISPLAYPOSITION(1) LEFT(80) PARENT(#COM_OWNER) TABPOSITION(1)
TOP(64)
DEFINE_COM CLASS(#PRIM_PHBN) NAME(#PHBN_2) CAPTION('show app3')
DISPLAYPOSITION(2) LEFT(78) PARENT(#COM_OWNER) TABPOSITION(2)
TOP(101)

DEFINE_COM CLASS(#app2) NAME(#APP2)

Define_Com Class(#app3) Scope(*APPLICATION)

Evtroutine Handling(#com_owner.Initialize)
Set Com(#com_owner) Caption(*component_desc)
Endroutine

Evtroutine Handling(#PHBN_1.Click)
#app2.showform
Endroutine

Evtroutine Handling(#PHBN_2.Click)

LANSA Newsletter March 2007 page 10
© LANSA 2007

#app3.showform
Endroutine

End_Com

To understand how Scope *Application works, follow the next steps:

1. Start app1. You will see the buttons ‘show app2’ and ‘show app3’.

2. Use button ‘show app2’ to activate app2. In both form app1 as app2, form

app3 is defined as scope(*application).

3. Now use in form app1 button ‘show app3’. Form app3 will be activated.

LANSA Newsletter March 2007 page 11
© LANSA 2007

4. Now use in form app2 button ‘show app3’. No new instance of form app3

will be created, because of the scope *application setting.

5. When you give field std_text a value now in app3, close this form and

restart app3 again in form app1 or app2, you will see that always the same

instance of app3 will be activated.

LANSA Newsletter March 2007 page 12
© LANSA 2007

How to use GZip in the Visual
LANSA Framework ?

What is GZip?
GZIP file compression is a standard that most HTTP servers and Web browser

support. Using it can significantly reduce the size of the HTML and JS files that

are created as part of VLF web browser and RAMP applications.

Framework applications are well suited to GZIP compression because the

generated HTML and JS files are relatively static.

Using the option "GZIP Compression for HTML files" can create all newly

generated HTML and JS files in both the normal uncompressed form and in the

GZIP compressed form.

How to setup GZip in the Framework
In Visual LANSA Framework Designer mode , use the (Framework) ->

(Properties) menu options and switch to the (Web Details) tab.

Enable the option called - "Use GZIP compression for HTML and JS Files" like

below:

LANSA Newsletter March 2007 page 13
© LANSA 2007

When this option is used all newly generated HTML and JS files will be created in

BOTH the normal uncompressed format as well as in the GZIP compressed

format (a compressed file has the same name as an uncompressed file ie. with

the suffix of ".gz").

Some points to check:

1. This option is for an iSeries Web Server only (it should not be used with

the Windows IIS Web Server).

2. When using this with an Apache Web Server ensure that it is configured

correctly - so that when it returns a compressed GZIP file to the web

browser it correctly informs the browser that the file is being delivered in

compressed format.

How to setup in Apache Web Server
Start the Apache administrator, then invoke the "Content Settings" option and

switch to the MIME tab:

Add file extension .gz (a GZIP file) so that it’s Content-encoding is returned to

the web browser as x-gzip.

This will include --> AddEncoding x-gzip .gz into the APACHE configuration.

After adding this option to the MIME table you should shut down and restart the

HTTP server instance for the change to take effect.

LANSA Newsletter March 2007 page 14
© LANSA 2007

How to use GZip in the Framework
When you use the "Execute Framework as Web Application" dialog you may elect

to execute either the normal uncompressed version or the compressed version of

the Framework Application.

To use the GZIP version of the Framework Application - checked the option to

"Use GZIP compressed version":

LANSA Newsletter March 2007 page 15
© LANSA 2007

The cell of a Grid
(Thanks to Pascal Van Doorn from LANSA Amsterdam)

This little tool returns the current selected row and column of a Grid.

Copy/paste source below into a new form, compile and test it.

*
*
* COMPONENT: STD_FORM
*
*
Function Options(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) CLIENTHEIGHT(256)
CLIENTWIDTH(459) FORMPOSITION(ScreenCenter) HEIGHT(290) LEFT(502)
TOP(143) WIDTH(467)
DEFINE_COM CLASS(#PRIM_GRID) NAME(#GRID_1)
CAPTIONNOBLANKLINES(True) COLUMNSCROLL(False)
COMPONENTVERSION(1) DISPLAYPOSITION(1) HEIGHT(129) LEFT(24)
PARENT(#COM_OWNER) SHOWBUTTONSELECTION(True)
SHOWSELECTION(True) SHOWSELECTIONHILIGHT(False)
SHOWSORTARROW(True) TABPOSITION(1) TOP(8) WIDTH(425)
DEFINE_COM CLASS(#PRIM_GDCL) NAME(#GDCL_1) DISPLAYPOSITION(1)
PARENT(#GRID_1) SOURCE(#STD_ALPHA) WIDTH(50)
DEFINE_COM CLASS(#PRIM_GDCL) NAME(#GDCL_2) DISPLAYPOSITION(2)
PARENT(#GRID_1) SOURCE(#STD_BOOL) WIDTH(50)
DEFINE_COM CLASS(#PRIM_PHBN) NAME(#PHBN_1) CAPTION('Get Current
Cell') DISPLAYPOSITION(3) LEFT(24) PARENT(#COM_OWNER)
TABPOSITION(2) TOP(144) WIDTH(145)
DEFINE_COM CLASS(#STD_NUM.Visual) NAME(#STD_NUM) CAPTION('Column')
DISPLAYPOSITION(2) HEIGHT(19) LABELTYPE(Caption) LEFT(24)
PARENT(#COM_OWNER) TABPOSITION(3) TOP(186) USEPICKLIST(False)
WIDTH(262)
DEFINE_COM CLASS(#STD_NUML.Visual) NAME(#STD_NUML) CAPTION('Row')
DISPLAYPOSITION(4) HEIGHT(19) LABELTYPE(Caption) LEFT(24)

LANSA Newsletter March 2007 page 16
© LANSA 2007

PARENT(#COM_OWNER) TABPOSITION(4) TOP(215) USEPICKLIST(False)
WIDTH(339)

Evtroutine Handling(#com_owner.Initialize)
Set Com(#com_owner) Caption(*component_desc)
Change Field(#std_alpha) To('''1''')
Change Field(#std_bool) To('''2''')
Add_Entry To_List(#GRID_1)
Change Field(#std_alpha) To('''3''')
Change Field(#std_bool) To('''4''')
Add_Entry To_List(#GRID_1)
Change Field(#std_alpha) To('''5''')
Change Field(#std_bool) To('''6''')
Add_Entry To_List(#GRID_1)
Endroutine

Evtroutine Handling(#PHBN_1.Click)
Change Field(#std_num) To(#GRID_1.FocusCell.Column.Position)
Change Field(#STD_NUML) To(#GRID_1.FocusCell.Item.Entry)
Endroutine
End_Com

LANSA Newsletter March 2007 page 17
© LANSA 2007

How do I improve
performance of my Integrator
Performance including SOAP
Services?

The processing time for a SOAP Service request seems to be relatively long. If

you are finding that a SOAP request takes more than 20 seconds or so then there

might be performance tuning issues. Obviously there may be many factors

causing the slow performance, like a large I/O to a file or a performance

intensive logic and the like. Note that RDMLX processing will be relatively longer

then RDML processing.

However, listed below are few important points to check for when attempting to

improve performance of requests.

Note: These steps are not restricted to SOAP processing only. It may be

also be used when having general performance issues with LANSA

Integrator.

===

Performance Tuning Considerations

1. Optimize (Optimise) the JAVA files to level 40. See online guide for more

information on 'Optimize Java Service Manager (OPTJSM)'. The

optimize operation has been seen to better the performance considerably.

2. If not required, turn Integrator tracing OFF.

3. Apply the latest CUME's and Java Group PTF's and Apache HTTP Server

Group PTF's.

4. Run the Apache instance in CGIConvMode BINARY/BINARY.

5. Is there only one caller program calling the LANSA SOAP server ? You

could pre-start some CGI jobs.

6. Is there high enough Activity Level for QBASE. The HTTP server and JSM

by default will be running out of QBASE as well as other iSeries jobs. If

the Activity Level is low only a small number of the jobs will be getting CPU

time, you could be starving the jobs of CPU resources.

LANSA Newsletter March 2007 page 18
© LANSA 2007

7. To improve the TCP/IP connection time between the JSM_OPEN and the

JSM server make sure that a DNS name is used as the host name on the

JSM_OPEN optional argument or the value in th e JSMCLTDTA dataarea.

Also make sure that this DNS name is in the local HOST table.

USE BUILTIN(JSM_OPEN) TO_GET(#JSMSTS #JSMMSG)

Value

Offset *...+....1....+....2

0 'LOCALHOST:4560

50 'JSM

8. To improve data transfer rates between the DCXS882X service program

(BIF's) and the JSM server, the send and receive buffers can be

configured.

The latest DCXS882X BIF will also set the socket options for send and

receive buffers to 128K before the connect. TCP/IP will then negotiate the

connection between client and server.

manager.properties - no tcp.buffer properties (use the TCP/IP
default values)
tcp.nodelay=*yes

tcp.buffer.send=131072

tcp.buffer.receive=131072

From trace file MANAGER.TXT

manager: tcp.port : 4560

manager: tcp.backlog : 20

manager: tcp.interface : *all

manager: tcp.nodelay : <null>

manager: tcp.buffer.send : <null>

manager: tcp.buffer.receive : <null>

manager: create manager server

manager: create socket address to listen on port 4560 across all interfaces

manager: bind to socket address

manager: start manager server

manager: server receive buffer size : 64000

Change TCP/IP Attributes (CHGTCPA)

Type choices, press Enter.

TCP keep alive 120 1-40320, *SAME, *DFT

TCP urgent pointer *BSD *SAME, *BSD, *RFC

TCP receive buffer size 64000 512-8388608, *SAME, *DFT

TCP send buffer size 64000 512-8388608, *SAME, *DFT

LANSA Newsletter March 2007 page 19
© LANSA 2007

manager.properties - tcp.buffer properties
tcp.nodelay=*yes

tcp.buffer.send=131072

tcp.buffer.receive=131072

From trace file MANAGER.TXT

manager: tcp.port : 4560

manager: tcp.backlog : 20

manager: tcp.interface : *all

manager: tcp.nodelay : *yes

manager: tcp.buffer.send : 131072

manager: tcp.buffer.receive : 131072

manager: create manager server

manager: create socket address to listen on port 4560 across all interfaces

manager: bind to socket address

manager: start manager server

manager: server receive buffer size : 131072

==

** Note: Do not measure the response time on the first request. There is a big

performance hit on the iSeries JAVA when loading classes for the first time.

LANSA Newsletter March 2007 page 20
© LANSA 2007

iSeries VLF-WEB

configuration and

debugging tip

If you are having trouble configuring a VLF-WEB system an/or find that when you

try to execute an application for the first time it fails for reasons that are not

immediately obvious in the job log then look for a file named

VF_Server_Trace.dat in the root of the iSeries IFS.

This file should contain a lot more details about the system and the results of

some specific configuration checks.

Even if the data content does not help you, it will certainly help the LANSA

support person to identify the problem.

Tips
 If there is no VF_Server_Trace.dat file produced, it may be because the

user profile you are executing the web application under is not authorized

to write files into the root of the IFS.

 VF_Server_Trace.dat is formatted in EBCDIC, not ASCII, so it needs to be

converted to view on a PC.

LANSA Newsletter March 2007 page 21
© LANSA 2007

Using Internet

Explorer 7 with Visual

LANSA Framework

Web Applications

LANSA previously provided instructions on how to allow your Visual LANSA

Framework Web Applications to execute with IE7. These instructions relate to the

BETA 2 version of IE7 available at the time.

Now that IE7 is generally available, support for IE7 is provided via a hotfix for

Visual LANSA Framework at EPC793 level only. To use the IE7 support hotfix,

you must have applied EPC793.

Contact your local LANSA vendor to request this hotfix.

The next version of the Visual LANSA Framework will fully support IE7.

Summary

Visual LANSA Framework IE7 (Beta) IE7 (GA)

EPC785 Yes* No

EPC793 Yes No**

* Available via Instructions. Refer to Using VLF with IE7 Beta 2

(http://www.lansa.com/support/tips/t0398.htm)

** IE7 support is provided via a hotfix for Visual LANSA Framework at EPC793

level only.

LANSA Newsletter March 2007 page 22
© LANSA 2007

UINUSERGROUP error VLF

An error 'UINUSERGROUP' is null or not an object' is displayed when running a

Visual LANSA Framework application on the browser.

If you defined a Framework User with authorities that belongs to a Framework

User Group:

LANSA Newsletter March 2007 page 23
© LANSA 2007

You might experienced this error at the login window when running the

Framework application on the browser with that user:

This can happen when logging in with a user that belongs to a User Group

defined in the Framework. The error will not occur when logging in with a user

that does not belong to a User Group defined in the Framework. If you are

experiencing this issue please contact LANSA Support for a hot-fix. The official

solution will be available in future versions of the Framework.

LANSA Newsletter March 2007 page 24
© LANSA 2007

MCH3601 QC2POSIX error on
V5R1 after applying EPCs to
LANSA 11.3 (CU3)

The following applies to V5R1 only.

Any EPC post EPC771 (EPC771 is also referred to as CU3) should not be applied

to a LANSA 11.3 system if this LANSA system is on OS/400 V5R1. This

specifically means you cannot apply EPC790 or higher to LANSA 11.3. By

applying post CU3 EPCs to a LANSA 11.3 environment, you may generate a

connection error when connecting to V5R1 via the LANSA Listener.

The error in the iSeries joblog is:

MCH3601 Escape 40 29/01/07 15:26:07 QC2POSIX QSYS *STMT QC2POSIX

QSYS *STMT

From module : QC2PLOCL

From procedure : _C_load_DB_ctype

Statement : 2355

To module : QC2PLOCL

To procedure : _C_load_DB_ctype

Statement : 2355

Message : Pointer not set for location referenced.

Cause : A pointer was used, either directly or as a basing pointer, that has

not been set to an address.

 This error is specific to V5R1.

 V5R1 is no longer supported by IBM.

 This error does not occur on current IBM supported OS/400 versions.

 This error can occur when using any or all of the following LANSA features
- LANSA Host Monitor
- LANSA Superserver
- Model B LANSA for the web
- LANSA Open
- LANSA Client
- any other LANSA product or feature that use the LANSA listener

Resolution
There is no circumvention available from LANSA for this error. If you generate

this error after applying a post CU3 EPC, LANSA recommends that you restore

from your last backup prior to applying the post CU3 EPCs. You must upgrade

to a supported version of OS/400 before applying any post CU3 EPC.

LANSA Newsletter March 2007 page 25
© LANSA 2007

Images Viewer
(Thanks to Theo de Bruin from LANSA Amsterdam)

This tool is using the Windows Dialog to select an image, which is shown in its

original size, or resized to the maximum resolution, without loosing its aspect

ratio. It works on every screen resolution.

Please feel free to alter this to your own needs. Suggestions can be mailed to

Theo.de.Bruin@LANSA-Europe.com.

To make a compile possible of the source below, you need to create two new

field components into the Repository.

 #STD_NUM10, Signed, length 10, EditCode J, attribute RB

 #IMAGE, Blob, attribute *ASQN and *LC, default *SQLNULL

LANSA Newsletter March 2007 page 26
© LANSA 2007

Copy/past source below into a new form:

*
* COMPONENT : IMG_VIEWER
* Created on: 26-09-2006
* Created by: Theo de Bruin - LANSA ltd., Amsterdam
* General : Form is using the Windows Dialog to
* select an image, which is shown in its
* original size, or resized to the max.
* resolution, without loosing its aspect
* ratio.
* Amendments: Please feel free to alter this to your
* own needs. Suggestions can be mailed
* Theo.de.Bruin@LANSA-Europe.com

FUNCTION OPTIONS(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) CAPTION('TBN Image Viewer')
CLIENTHEIGHT(433) CLIENTWIDTH(374) FRAMESTYLE(Single) HEIGHT(467)
LAYOUTMANAGER(#ATLM_1) LEFT(484) TOP(8) WIDTH(382)
DEFINE_COM CLASS(#PRIM_IMGE) NAME(#IMGE_1) DISPLAYPOSITION(1) HEIGHT(294)
LEFT(0) PARENT(#COM_OWNER) TABPOSITION(1) TOP(0) WIDTH(374)
DEFINE_COM CLASS(#STD_QSEL.Visual) NAME(#FIL_PATH) CAPTION('File Location')
DISPLAYPOSITION(5) HEIGHT(22) LABELTYPE(Caption) LEFT(8) MARGINLEFT(75)
PARENT(#GPBX_1) TABPOSITION(6) TOP(80) USEPICKLIST(False) WIDTH(361)
DEFINE_COM CLASS(#STD_NUM.Visual) NAME(#FIL_SIZE) CAPTION('File Size')
DISPLAYPOSITION(3) HEIGHT(22) LABELTYPE(Caption) LEFT(264) MARGINLEFT(50)
PARENT(#GPBX_1) TABPOSITION(4) TOP(56) USEPICKLIST(False) WIDTH(105)
DEFINE_COM CLASS(#STD_TEXTS.Visual) NAME(#FIL_NAME) CAPTION('File Name')
DISPLAYPOSITION(1) HEIGHT(22) LABELTYPE(Caption) LEFT(8) MARGINLEFT(75)
PARENT(#GPBX_1) TABPOSITION(2) TOP(56) USEPICKLIST(False) WIDTH(249)

* File Open Dialog

Define_Com Class(#PRIM_APPL.ICommonDialogFileOpen) Name(#openFileDlg)
Reference(*DYNAMIC)
DEFINE_COM CLASS(#PRIM_GPBX) NAME(#GPBX_1) DISPLAYPOSITION(2) HEIGHT(139)
LEFT(0) PARENT(#COM_OWNER) TABPOSITION(2) TABSTOP(False) TOP(294)
WIDTH(374)
DEFINE_COM CLASS(#PRIM_PHBN) NAME(#PHBN_2) CAPTION('BROWSE')
DISPLAYPOSITION(6) HEIGHT(32) IMAGE(#VB_SEARCH) LEFT(16) PARENT(#GPBX_1)
TABPOSITION(8) TOP(16) WIDTH(104)
DEFINE_COM CLASS(#PRIM_STBR) NAME(#STBR_1) DISPLAYPOSITION(7) HEIGHT(33)
LEFT(0) MESSAGEPOSITION(1) PARENT(#GPBX_1) TABPOSITION(5) TABSTOP(False)
TOP(106) WIDTH(374)
*
DEFINE_COM CLASS(#STD_NUM10.Visual) NAME(#IMG_HGHT) CAPTION('Real Height')
DISPLAYPOSITION(4) HEIGHT(22) LABELTYPE(Caption) LEFT(136) MARGINLEFT(75)
PARENT(#GPBX_1) TABPOSITION(3) TOP(8) WIDTH(121)
DEFINE_COM CLASS(#STD_NUM10.Visual) NAME(#IMG_WDTH) CAPTION('Width')
DISPLAYPOSITION(9) HEIGHT(22) LABELTYPE(Caption) LEFT(264) MARGINLEFT(50)
PARENT(#GPBX_1) TABPOSITION(9) TOP(8) WIDTH(105)
DEFINE_COM CLASS(#STD_NUM10.Visual) NAME(#PNL_HGHT) CAPTION('Shown
Height') DISPLAYPOSITION(2) HEIGHT(22) LABELTYPE(Caption) LEFT(136)
MARGINLEFT(75) PARENT(#GPBX_1) TABPOSITION(1) TOP(32) WIDTH(121)
DEFINE_COM CLASS(#STD_NUM10.Visual) NAME(#PNL_WDTH) CAPTION('Width')
DISPLAYPOSITION(8) HEIGHT(22) LABELTYPE(Caption) LEFT(264) MARGINLEFT(50)
PARENT(#GPBX_1) TABPOSITION(7) TOP(32) WIDTH(105)

LANSA Newsletter March 2007 page 27
© LANSA 2007

* Layout MAnagement
DEFINE_COM CLASS(#PRIM_ATLM) NAME(#ATLM_1)
DEFINE_COM CLASS(#PRIM_ATLI) NAME(#ATLI_1) ATTACHMENT(Center)
MANAGE(#IMGE_1) PARENT(#ATLM_1)
DEFINE_COM CLASS(#PRIM_ATLI) NAME(#ATLI_2) ATTACHMENT(Bottom)
MANAGE(#GPBX_1) PARENT(#ATLM_1)

* Work Fields
DEFINE #SFACTORH DECIMALS(6) REFFLD(#STD_NUM) DEFAULT(1)
DEFINE #SFACTORW DECIMALS(6) REFFLD(#STD_NUM) DEFAULT(1)

* Size difference between Form and Image
DEFINE_COM CLASS(#STD_NUM) NAME(#B_Width)
DEFINE_COM CLASS(#STD_NUM) NAME(#B_Height)

*Fileinfo
DEFINE FIELD(#OV_PATH) TYPE(*CHAR) LENGTH(256)
DEFINE FIELD(#OV_RETC) TYPE(*CHAR) LENGTH(2)
DEFINE FIELD(#OV_ERRN) TYPE(*DEC) LENGTH(15) DECIMALS(0)
DEFINE FIELD(#OV_NAME) TYPE(*CHAR) LENGTH(100)
DEFINE FIELD(#OV_PREFIX) TYPE(*CHAR) LENGTH(12)
DEFINE FIELD(#OV_SUFFIX) TYPE(*CHAR) LENGTH(3)
DEFINE FIELD(#OV_DATE) TYPE(*CHAR) LENGTH(8)
DEFINE FIELD(#OV_TIME) TYPE(*CHAR) LENGTH(6)
DEFINE FIELD(#OV_ISDIR) TYPE(*CHAR) LENGTH(1)
DEFINE FIELD(#OV_SIZE) TYPE(*DEC) LENGTH(9) DECIMALS(0) EDIT_CODE(3)
DEF_LIST NAME(#FLIST) FIELDS(#OV_NAME #OV_PREFIX #OV_SUFFIX #OV_DATE
#OV_TIME #OV_SIZE #OV_ISDIR) TYPE(*WORKING) ENTRYS(5000)

*==
=============
Evtroutine Handling(#com_owner.Initialize)
Set Com(#com_owner) Caption(*component_desc)
*determmine the difference between Form and Image
#B_Height := #com_owner.height - #IMGE_1.height
#B_Width:= #com_owner.width - #IMGE_1.width

Endroutine

Mthroutine Name(ChooseProductImage) Help('Pick a product image via Windows xplorer')
Define_Map For(*result) Class(#STD_QSEL) Name(#o_FileName)
Define Field(#boolRes) Type(*BOOLEAN)

Invoke Method(#sys_appln.CreateFileOpenDialog) Result(#openFileDlg)
#openFileDlg.Title := 'Select Image to be displayed'
#openFileDlg.AddFilter('JPG Images (*.jpg)' '*.jp*')
#openFileDlg.AddFilter('GIF Images (*.gif)' '*.gif')
#openFileDlg.AddFilter('BMP Images (*.bmp)' '*.bmp')
#openFileDlg.AddFilter('All files (*.*)' '*.*')
#openFileDlg.FilterIndex := 1
#openFileDlg.HideReadOnly := false
#openFileDlg.ExplorerStyle := false
#openFileDlg.MultiSelect := false

Invoke Method(#openFileDlg.Show) Okpressed(#boolRes) Formowner(#com_self)
If (#boolRes)

LANSA Newsletter March 2007 page 28
© LANSA 2007

* OK BUTTON PRESSED
#o_FileName := #openFileDlg.File
Else
* CANCEL BUTTON PRESSED
#o_FileName := *blanks
Endif
Endroutine

Evtroutine Handling(#PHBN_2.Click #IMGE_1.Doubleclick)
* set the product image filename to the file name of an image chosen by the user.
#Image := #com_owner.ChooseProductImage

* If the user chose an image, assign it to the #img_1 component (and check for EXIF)
If (#IMAGE *NE *BLANKS)
#IMGE_1.FileName #STD_QSEL := #Image.FileName
If Cond(#IMGE_1.Format = UNKNOWN)
Use Builtin(OV_Message_Box) With_Args("Unknown image format, or JPG contains EXIF
data")
Else
#Com_Owner.SetSize Height(#IMGE_1.ImageHeight) Width(#IMGE_1.ImageWidth)
* GET the file size
#FIL_PATH := #STD_QSEL.leftmost(#IMGE_1.Filename.lastpositionof('\'))
#FIL_NAME := #STD_QSEL.Substring((#IMGE_1.Filename.lastpositionof('\') + 1) 100)
USE BUILTIN(OV_FILE_SERVICE) WITH_ARGS(GET_DIR #FIL_PATH) TO_GET(#OV_RETC
#OV_ERRN #FLIST)
LOC_ENTRY #FLIST WHERE('#OV_NAME = #FIL_NAME')
#FIL_SIZE := #OV_SIZE
Endif
Endif
Endroutine

MTHROUTINE Name(Setsize)
Define_Map For(*Input) Class(#Std_Num) Name(#Height)
Define_Map For(*Input) Class(#Std_Num) Name(#Width)

#SFACTORH #SFACTORW := 1
#IMG_HGHT #IMGE_1.Height := #Height
#IMG_WDTH #IMGE_1.Width := #Width

#com_owner.height := #IMG_HGHT + #B_Height
#com_owner.width := #IMG_WDTH + #B_Width
* determine if picture is larger than resized screen
IF ('#IMGE_1.imagewidth > (#com_owner.width - #B_Width)')
#SFACTORW := ((#com_owner.width - #B_Width) / #imge_1.imagewidth)
ENDIF
IF ('#IMGE_1.imageheight > (#com_owner.height - #B_Height)')
#SFACTORH := ((#com_owner.height - #B_Height) / #imge_1.imageheight)
ENDIF
* Keep ratio
IF ('#SFACTORW < #SFACTORH')
#SFACTORH := #SFACTORW
ELSE
#SFACTORW := #SFACTORH
ENDIF
* if larger,shrink form
IF ('#SFACTORH < 1')
set #com_owner height((#IMG_HGHT * #SFACTORH) + #B_Height) top(1)
ENDIF

LANSA Newsletter March 2007 page 29
© LANSA 2007

IF ('#SFACTORW < 1')
set #com_owner width((#IMG_WDTH * #SFACTORW) + #B_Width) left(1)
ENDIF
#PNL_Wdth := #IMGE_1.width
#PNL_Hght := #IMGE_1.height
ENDROUTINE

End_Com

